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SHORT COMMUNICATION 

USE OF THE KIRCHHOFF TRANSFORMATION IN 
FINITE ELEMENT ANALYSIS 

DAN GIVOLI 

Department of Aerospace Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel 

ABSTRACT 
The Kirchhoff transformation, in conjunction with the finite element method, is proposed as a tool in 
solving non-linear heat conduction problems. A very simple way to obtain the inverse Kirchhoff 
transformation is shown, using the contour lines of the Kirchhoff variable obtained from a finite element 
analysis. 
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INTRODUCTION 

Non-linear heat flow problems are often solved by using a finite element spatial discretization. 
Applying the finite element method directly to the non-linear heat equation results in a non-linear 
system of ordinary differential equations in time or, if the problem is a steady-state one, in a 
non-linear system of algebraic equations. In certain cases one may adopt an alternative procedure, 
consisting of the following steps: (a) apply the Kirchhoff transformation to the non-linear heat 
equation, thus turning it into a linear differential equation; (b) solve the linear transformed 
problem using finite elements; (c) calculate the inverse transform of the finite element results, 
which is the desired temperature distribution. 

To fix ideas, we consider the two-dimensional steady-state heat flow in an homogeneous and 
isotropic medium, with temperature-dependent thermal conductivity. Let T(x) be the unknown 
absolute temperature, where x is the position in a finite two-dimensional domain ft, with 
boundary Γ = Γg Γh. The governing equation is: 

= 0 in Ω (1) 

where k(T) is the given temperature-dependent thermal conductivity. On the boundary Γ we 
prescribe the boundary conditions: 

T = g on Γg (2) 

k(T)Tn = h on Γh (3) 
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where g and h are given functions, and Tn is the normal derivative of T on Γh. Thus, on Γg the 
temperature is prescribed whereas on Γh the normal heat flux is specified. We assume that Γg 
is not empty. The problem (1)-(3) is non-linear due to the T-dependence of k in (1) and (3). 

The Kirchhoff transformation of T is defined as: 

К[T] = k(Τ) dτ (4) 

We shall use the variable V(x) to denote the Kirchhoff transform of the temperature T(x), i.e. 
V = К[T]. Now, from (4) there follows: 

(5) 
The relation (5) can be used to turn the non-linear problem (l)-(3) into a linear one. By using 
(4) and (5), we get from (1)-(3): 

= 0 in Ω (6) 
V = К[g] on Γg (7) 
Vn = h on Γh (8) 

Equations (6)-(8) constitute a linear problem for the Kirchhoff variable V(x). 
The use of the Kirchhoff transformation as shown above is a 'mathematical trick' that has 

been employed extensively to derive analytic solutions to non-linear heat flow problems1-5. It 
has also been used frequently in the context of the boundary element method6-10. However, it 
has rarely been used in the finite element context11. There are two reasons for this. First, the 
linearization by Kirchhoff transformation is not very general, as it can be applied only under 
certain limitations. For example, it fails when the medium is inhomogeneous or anisotropic, or 
when convective or radiative boundary conditions are present. Second, the inverse transformation 
T = К - 1 [V ] , which is needed as a last step to recover the temperature field, is not always easy 
to calculate. Therefore, it is usually considered preferable to apply the finite element scheme 
directly to the original non-linear problem, especially when a commercial finite element code is 
concerned. On the other hand, the common use of the Kirchhoff transformation in boundary 
element schemes can be explained by the fact that the latter rely much more severely on the 
linearity of the problem at hand, being based on integral formulations which involve an analytic 
fundamental solution. 

An explicit expression for the inverse Kirchhoff transformation К -1[V] can be derived 
analytically when the conductivity function k(T) is sufficiently simple. Three such expressions 
are given in an Appendix in Reference 10, including the case where k(T) is linear, which is the 
case considered in Reference 11. When k(T) is not so simple, no explicit expression for К-1[V] 
is available. 

The purpose of this note is to provide a very simple procedure to obtain the temperature 
distribution T from the Kirchhoff variable V. We especially consider finite element schemes. 
The simplicity and efficiency of the method makes use of the Kirchhoff transformation for 
solving problems of the form (l)-(3) very attractive. The approach can also be applied to the 
more complicated time-dependent problem. 

TWO THEOREMS ON CONTOUR LINES AND THEIR CONSEQUENCES 

First, we prove two almost obvious theorems on the contour lines (or level lines or profiles) of 
the solution T to (1)-(3). 
Theorem 1. Every contour line of T is also a contour line of V and vice versa. 
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Proof. Based on physical reasoning, we assume that the conductivity k is always positive and 
is a continuous function of T. From (4) we deduce that V = К[T] is positive. In addition, (4) 
implies dV/dT = k(T) and therefore dV/dT is also positive. Hence, V is a continuous and 
monotonely increasing function of T. By a well known theorem in calculus we conclude that 
the inverse function К-1[V] is single-valued. Thus, the mapping between T and V is one-to-one. 
A contour line of T corresponding to the value T* is also a contour line of V corresponding 
to the value V* = К[T*]. 
Theorem 2. All the contour lines of T intersect the boundary T. 

Proof. V satisfies Laplace's equation (6). Using the maximum principle for harmonic functions, 
we deduce that V attains its extremal value on the boundary Γ. From the monotonicity of V(T) 
indicated above, the temperature T also attains its minimum Tmin and maximum Tmax on Γ, 
and there are no local extrema inside Ω. This prevents the possibility of having closed contours 
inside Ω. Moreover, assuming that the temperature T is a continuous function of position, we 
conclude that all the values of T in the interval [Tmin, Tmax] are attained on Γ. Therefore, all 
the contour lines of T intersect Γ. 

We make use of these two theorems to devise a procedure for temperature recovery. First, 
we draw the contour plot corresponding to V, obtained by the finite element analysis. By theorem 
1, this is also the contour plot of the temperature T. It remains to associate a temperature value 
to each contour line. From theorem 2, each contour line intersects either Fg or Fh. Now, the 
temperature on Fg is given by the boundary condition (2). This implies that the T-values of all 
the contour lines that intersect Γg are immediately determined. Furthermore, some of these 
contour lines have their other end on Γh. Thus, the only contour lines whose T-values are not 
trivially determined are those which have both their end points on Γh. 

In this light, it is appropriate to divide the entire boundary Γ into two new parts. The first 
part is denoted and is defined as the set of all points which are either on Γg or on the end 
point of a contour line starting out from Γg. The second part is denoted and is defined as 
the set of all points on Γh except those which are on (see Figure 1a). Thus, it remains to find 
the temperature on ; in turn it immediately determines the temperature values corresponding 
to all the contour lines in the entire domain Ω. In the next section we describe a simple procedure 
for calculating T on 

CALCULATING THE TEMPERATURE ON 

To fix ideas, and without loss of generality, suppose that the boundary consists of one 
continuous curve, and that linear (or bilinear) isoparametric finite elements are used near 



476 DAN GIVOLI 

Let the nodes on be numbered sequentially, i.e. A = 1, 2, ..., N, where node 1 and node N 
are the two intersection points of and (see Figure 1b). We denote T at node A by TA. 
Thus, T1 and TN are known, but all the other nodal temperatures on are unknown. We note 
that V and also its first derivatives are known everywhere, having been found by the finite 
element analysis. In particular, we know the tangential derivative Vs on the boundary . It is 
piecewise constant, and is discontinuous at the nodes on We denote the constant value of 
Vs on the segment between the two consecutive nodes A and A + 1 on by (Vs)A,A+1. Thus 
we have: 

(K)A,A+1 = (VA+1-VA)/δA (9) 
where δA is the length of the segment connecting nodes A and A + 1 (see Figure 1b). 

Now, suppose TA is given. Then k(TA) is known. From (5) we have Ts = Vs/k(T), and so 
approximately: 

(Ts)A,A+1 = (10) 

Also, assuming linear variation of T within the segment (A, A + 1) we can write: 
(Ts)A,A+1 = (TA+1-TA)/δA (11) 

We note that the approximations (10) and (11) are somewhat ad-hoc in nature, as opposed to 
(9) which is consistent with the finite element interpolation. Using (9), (10) and (11), we finally 
get the recursive formula: 

(12) 

Since T1 is given, we can use (12) recursively to find all the nodal temperatures on 
It is worth noting that we may repeat the use of (12) starting from the other end of namely 

from node N, and advancing towards node 1. In general, the results would depend on the 
direction in which we advance. If the results obtained in the two cases are significantly different, 
this should serve as an indication that the discretization on must be refined. 

Cases where the boundary consists of more than one continuous curve and where other 
types of finite elements are used can be treated similarly. 

THE MORE GENERAL CASE 

The time dependent case is only slightly more involved. In this case (1) is replaced by: 
(13) 

Here f is given heat source function, a is the thermal diffusivity, which is assumed to be 
independent of temperature (otherwise the Kirchhoff transformation does not make (13) linear!), 
and a dot indicates differentiation with respect to time. An initial condition is supplemented to 
(13), (2) and (3). In this case theorem 1 still holds, but theorem 2 does not. In other words, if 
(1) is replaced by the dynamic equation (13) it is possible to have closed contour lines Ω. The 
procedure based on (12) will not be able to determine the T-values corresponding to these closed 
contours. A direct numerical inversion may be performed to determine those values; if there are 
only a few closed contours in the contour plot the computational effort involved will be small. 

Another possibility is to prepare a table of T versus V, for the relevant interval of temperature 
values. This table is constructed by using the transformation (4) itself, not its inverse. After the 
numerical results for V are available, the temperature associated with each closed contour line 
is read from the transformation table, using linear interpolation. 
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The three-dimensional case is technically more complicated. In this case the boundary Γ is 
a surface, and unless the finite element mesh has a high degree of regularity, it is not clear how 
to automate the procedure for finding T on using a recursive formula analogous to (12). 
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